Machine learning shows a limit to rain-snow partitioning accuracy when using near-surface meteorology

0
Machine learning shows a limit to rain-snow partitioning accuracy when using near-surface meteorology
  • Feiccabrino, J., Graff, W., Lundberg, A., Sandström, N. & Gustafsson, D. Meteorological knowledge useful for the improvement of snow rain separation in surface based models. Hydrology 2, 266–288 (2015).

    Google Scholar 

  • Harpold, A. A. et al. Rain or snow: hydrologic processes, observations, prediction, and research needs. Hydrol. Earth Syst. Sci. 21, 1–22 (2017).

    ADS 

    Google Scholar 

  • United States Army Corps of Engineers. Snow hydrology. US Army North Pac. Div. Portland Or. (1956).

  • Auer, A. H. Jr. The rain versus snow threshold temperatures. Weatherwise 27, 67–67 (1974).

    MATH 

    Google Scholar 

  • Dai, A. Temperature and pressure dependence of the rain-snow phase transition over land and ocean. Geophys. Res. Lett. 35, L12802 (2008).

  • Jennings, K. S., Winchell, T. S., Livneh, B. & Molotch, N. P. Spatial variation of the rain-snow temperature threshold across the Northern Hemisphere. Nat. Commun. 9, 1148 (2018).

  • Yu, G. et al. Crowdsourced data reveal shortcomings in precipitation phase products for rain and snow partitioning. Geophys. Res. Lett. 51, e2024GL112853 (2024).

    Google Scholar 

  • Ding, B. et al. The dependence of precipitation types on surface elevation and meteorological conditions and its parameterization. J. Hydrol. 513, 154–163 (2014).

    ADS 
    MATH 

    Google Scholar 

  • Jennings, K. S. et al. Crowdsourced data highlight precipitation phase partitioning variability in rain-snow transition zone. Earth Space Sci. 10, e2022EA002714 (2023).

    ADS 

    Google Scholar 

  • Harder, P. & Pomeroy, J. W. Hydrological model uncertainty due to precipitation-phase partitioning methods. Hydrol. Process. 28, 4311–4327 (2014).

    ADS 
    MATH 

    Google Scholar 

  • Jennings, K. S. & Molotch, N. P. The sensitivity of modeled snow accumulation and melt to precipitation phase methods across a climatic gradient. Hydrol. Earth Syst. Sci. 23, 3765–3786 (2019).

    ADS 
    MATH 

    Google Scholar 

  • Leroux, N. R., Vionnet, V. & Thériault, J. M. Performance of precipitation phase partitioning methods and their impact on snowpack evolution in a humid continental climate. Hydrol. Process. 37, e15028 (2023).

    ADS 

    Google Scholar 

  • Motoyama, H. Simulation of seasonal snowcover based on air temperature and precipitation. J. Appl. Meteorol. Climatol. 29, 1104–1110 (1990).

    ADS 
    MATH 

    Google Scholar 

  • L’hôte, Y., Chevallier, P., Coudrain, A., Lejeune, Y. & Etchevers, P. Relationship between precipitation phase and air temperature: comparison between the Bolivian Andes and the Swiss Alps/Relation entre phase de précipitation et température de l’air: comparaison entre les Andes Boliviennes et les Alpes Suisses. Hydrol. Sci. J. 50, 997 (2005).

  • Kienzle, S. W. A new temperature based method to separate rain and snow. Hydrol. Process. 22, 5067–5085 (2008).

    ADS 
    MATH 

    Google Scholar 

  • Quick, M. C. & Pipes, A. UBC WATERSHED MODEL/Le modèle du bassin versant UCB. Hydrol. Sci. J. 22, 153–161 (1977).

    Google Scholar 

  • Tarboton, D. G. & Luce, C. H. Utah Energy Balance Snow Accumulation and Melt Model (UEB). (1996).

  • Harder, P. & Pomeroy, J. Estimating precipitation phase using a psychrometric energy balance method. Hydrol. Process. 27, 1901–1914 (2013).

    ADS 
    MATH 

    Google Scholar 

  • Marks, D., Winstral, A., Reba, M., Pomeroy, J. & Kumar, M. An evaluation of methods for determining during-storm precipitation phase and the rain/snow transition elevation at the surface in a mountain basin. Adv. Water Resour. 55, 98–110 (2013).

    ADS 

    Google Scholar 

  • Behrangi, A., Yin, X., Rajagopal, S., Stampoulis, D. & Ye, H. On distinguishing snowfall from rainfall using near-surface atmospheric information: Comparative analysis, uncertainties and hydrologic importance. Q. J. R. Meteorol. Soc. 144, 89–102 (2018).

    ADS 

    Google Scholar 

  • Froidurot, S., Zin, I., Hingray, B. & Gautheron, A. Sensitivity of precipitation phase over the swiss alps to different meteorological variables. J. Hydrometeorol. 15, 685–696 (2014).

    ADS 

    Google Scholar 

  • Hu, J., Che, T., He, Y., Huang, W. & Yang, X. An intercomparison of empirical schemes for partitioning precipitation phase. J. Hydrol. Reg. Stud. 53, 101757 (2024).

    MATH 

    Google Scholar 

  • Huss, M. et al. Toward mountains without permanent snow and ice. Earths Future 5, 418–435 (2017).

    ADS 
    MATH 

    Google Scholar 

  • Immerzeel, W. W. et al. Importance and vulnerability of the world’s water towers. Nature 577, 364–369 (2020).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Siirila-Woodburn, E. R. et al. A low-to-no snow future and its impacts on water resources in the western United States. Nat. Rev. Earth Environ. 2, 800–819 (2021).

    ADS 
    MATH 

    Google Scholar 

  • Lynn, E. et al. Technical note: Precipitation-phase partitioning at landscape scales to regional scales. Hydrol. Earth Syst. Sci. 24, 5317–5328 (2020).

    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Heggli, A., Hatchett, B., Schwartz, A., Bardsley, T. & Hand, E. Toward snowpack runoff decision support. iScience 25, 104240 (2022).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Musselman, K. N. et al. Projected increases and shifts in rain-on-snow flood risk over western North America. Nat. Clim. Change 1 (2018).

  • Polade, S. D., Gershunov, A., Cayan, D. R., Dettinger, M. D. & Pierce, D. W. Precipitation in a warming world: Assessing projected hydro-climate changes in California and other Mediterranean climate regions. Sci. Rep. 7, 10783 (2017).

    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Rhoades, A. M. et al. Asymmetric emergence of low-to-no snow in the midlatitudes of the American Cordillera. Nat. Clim. Change 12, 1151–1159 (2022).

    ADS 
    MATH 

    Google Scholar 

  • Shulgina, T. et al. Observed and projected changes in snow accumulation and snowline in California’s snowy mountains. Clim. Dyn. 61, 4809–4824 (2023).

    MATH 

    Google Scholar 

  • Kratzert, F. et al. Toward improved predictions in ungauged basins: Exploiting the power of machine learning. Water Resour. Res. 55, 11344–11354 (2019).

    ADS 
    MATH 

    Google Scholar 

  • Frame, J. M. et al. Deep learning rainfall–runoff predictions of extreme events. Hydrol. Earth Syst. Sci. 26, 3377–3392 (2022).

    ADS 
    MATH 

    Google Scholar 

  • McGovern, A. et al. Using Artificial Intelligence to Improve Real-Time Decision-Making for High-Impact Weather. Bull. Am. Meteorol. Soc. 98, 2073–2090 (2017).

    ADS 
    MATH 

    Google Scholar 

  • Filipiak, B. C., Bassill, N. P., Corbosiero, K. L., Lang, A. L. & Lazear, R. A. Probabilistic Forecasting Methods of Winter Mixed-Precipitation Events in New York State Utilizing a Random Forest. Artif. Intell. Earth Syst. 2, e220080 (2023).

  • Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    MATH 

    Google Scholar 

  • Campozano, L. et al. Parsimonious models of precipitation phase derived from random forest knowledge: intercomparing logistic models, neural networks, and random forest models. Water 13, 3022 (2021).

    CAS 
    MATH 

    Google Scholar 

  • Arienzo, M. M., Collins, M. & Jennings, K. S. Enhancing engagement of citizen scientists to monitor precipitation phase. Front. Earth Sci. (2021).

  • Collins, M. et al. Effective engagement while scaling up: lessons from a citizen science program transitioning from single- to multi-region scale. Citiz. Sci.: Theory Pract. 8, 65 (2023).

    ADS 

    Google Scholar 

  • Chen, T. & Guestrin, C. XGBoost: A Scalable Tree Boosting System. in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 785–794 (ACM, San Francisco California USA, 2016). https://doi.org/10.1145/2939672.2939785.

  • Ye, H., Cohen, J. & Rawlins, M. Discrimination of solid from liquid precipitation over northern eurasia using surface atmospheric conditions*. J. Hydrometeorol. 14, 1345–1355 (2013).

    ADS 
    MATH 

    Google Scholar 

  • Kratzert, F., Klotz, D., Brenner, C., Schulz, K. & Herrnegger, M. Rainfall–runoff modelling using long short-term memory (LSTM) networks. Hydrol. Earth Syst. Sci. 22, 6005–6022 (2018).

    ADS 

    Google Scholar 

  • Meyal, A. Y. et al. Automated Cloud based long short-term memory neural network based SWE prediction. Front. Water 2, 574917 (2020).

  • Kratzert, F. et al. Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets. Hydrol. Earth Syst. Sci. 23, 5089–5110 (2019).

    ADS 
    MATH 

    Google Scholar 

  • Elmore, K. L. et al. MPING: Crowd-sourcing weather reports for research. Bull. Am. Meteorol. Soc. 95, 1335–1342 (2014).

    ADS 
    MATH 

    Google Scholar 

  • Landolt, S. D. et al. The impacts of automation on present weather–type observing capabilities across the conterminous united. S. J. Appl. Meteorol. Climatol. 58, 2699–2715 (2019).

    ADS 
    MATH 

    Google Scholar 

  • White, S. P., Thornes, J. E. & Chapman, L. A guide to road weather information systems. Version 2, 1–83 (2006).

    MATH 

    Google Scholar 

  • Serafin, R. J. & Wilson, J. W. Operational weather radar in the united states: progress and opportunity. Bull. Am. Meteorol. Soc. 81, 501–518 (2000).

    ADS 
    MATH 

    Google Scholar 

  • Maddox, R. A., Zhang, J., Gourley, J. J. & Howard, K. W. Weather Radar coverage over the contiguous United States. Weather Forecast. 17, 927–934 (2002).

    ADS 

    Google Scholar 

  • Kitzmiller, D., Miller, D., Fulton, R. & Ding, F. Radar and multisensor precipitation estimation techniques in national weather service hydrologic operations. J. Hydrol. Eng. 18, 133–142 (2013).

    Google Scholar 

  • White, A. B. et al. Developing a performance measure for snow-level forecasts. J. Hydrometeorol. 11, 739–753 (2010).

    ADS 
    MATH 

    Google Scholar 

  • Hatchett, B. J. et al. Winter snow level rise in the Northern Sierra Nevada from 2008 to 2017. Water 9, 899 (2017).

    MATH 

    Google Scholar 

  • Iguchi, T. et al. GPM/DPR Level-2 Algorithm Theoretical Basis Document. (2018).

  • Xiong, W., Tang, G., Wang, T., Ma, Z. & Wan, W. Evaluation of IMERG and ERA5 precipitation-phase partitioning on the global scale. Water 14, 1122 (2022).

    MATH 

    Google Scholar 

  • Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    ADS 
    MATH 

    Google Scholar 

  • Skofronick-Jackson, G. et al. The Global Precipitation Measurement (GPM) mission’s scientific achievements and societal contributions: reviewing four years of advanced rain and snow observations. Q. J. R. Meteorol. Soc. 144, 27–48 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huffman, G. et al. NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG) Prepared for: Global Precipitation Measurement (GPM) National Aeronautics and Space Administration (NASA). Algorithm Theoretical Basis Document (ATBD) Version 06 26–26 (2019).

  • Elmore, K. L., Grams, H. M., Apps, D. & Reeves, H. D. Verifying forecast precipitation type with mPING. Weather Forecast. 30, 656–667 (2015).

    ADS 

    Google Scholar 

  • Casellas, E. et al. Surface precipitation phase discrimination in complex terrain. J. Hydrol. 592, 125780 (2021).

    Google Scholar 

  • Nipen, T. N., Seierstad, I. A., Lussana, C., Kristiansen, J. & Hov, Ø. Adopting citizen observations in operational weather prediction. Bull. Am. Meteorol. Soc. 101, E43–E57 (2020).

    ADS 

    Google Scholar 

  • Garcia-Marti, I. et al. From proof-of-concept to proof-of-value: Approaching third-party data to operational workflows of national meteorological services. Int. J. Climatol. 43, 275–292 (2023).

    MATH 

    Google Scholar 

  • Heppner, P. O. G. Snow versus Rain: Looking beyond the “Magic” Numbers. Weather Forecast. 7, 683–691 (1992).

    ADS 
    MATH 

    Google Scholar 

  • Reeves, H. D., Elmore, K. L., Ryzhkov, A., Schuur, T. & Krause, J. Sources of uncertainty in precipitation-type forecasting. Weather Forecast. 29, 936–953 (2014).

    ADS 

    Google Scholar 

  • Minder, J. R. et al. P-Type processes and predictability: The Winter Precipitation Type Research Multiscale Experiment (WINTRE-MIX). Bull. Am. Meteorol. Soc. 104, E1469–E1492 (2023).

    MATH 

    Google Scholar 

  • Ikeda, K., Steiner, M. & Thompson, G. Examination of mixed-phase precipitation forecasts from the high-resolution rapid refresh model using surface observations and sounding data. Weather Forecast. 32, 949–967 (2017).

    ADS 

    Google Scholar 

  • Lundquist, J., Hughes, M., Gutmann, E. & Kapnick, S. Our skill in modeling mountain rain and snow is bypassing the skill of our observational networks. Bull. Am. Meteorol. Soc. 100, 2473–2490 (2019).

    ADS 

    Google Scholar 

  • Vionnet, V. et al. Snow level from post-processing of atmospheric model improves snowfall estimate and snowpack prediction in mountains. Water Resour. Res. 58, e2021WR031778 (2022).

    ADS 

    Google Scholar 

  • Reichle, R. H. Data assimilation methods in the Earth sciences. Adv. Water Resour. 31, 1411–1418 (2008).

    ADS 
    MATH 

    Google Scholar 

  • Li, X. et al. Land data assimilation: harmonizing theory and data in land surface process studies. Rev. Geophys. 62, e2022RG000801 (2024).

    ADS 

    Google Scholar 

  • Hu, X., Liu, F., Qi, Y., Zhang, J. & Li, X. A novel strategy to assimilate category variables in land-use models based on Dirichlet distribution. Environ. Model. Softw. 149, 105324 (2022).

    MATH 

    Google Scholar 

  • Reeves, H. D. The uncertainty of precipitation-type observations and its effect on the validation of forecast precipitation type. Weather Forecast. 31, 1961–1971 (2016).

    ADS 
    MATH 

    Google Scholar 

  • Cosgrove, B. A. et al. Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project. J. Geophys. Res. Atmos. 108, 8842 (2003).

  • Xia, Y. et al. Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res. Atmos. 117, D03109 (2012).

  • Tyralis, H., Papacharalampous, G. & Langousis, A. A brief review of random forests for water scientists and practitioners and their recent history in water resources. Water 11, 910 (2019).

    MATH 

    Google Scholar 

  • Chawla, N. V., Bowyer, K. W., Hall, L. O. & Kegelmeyer, W. P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002).

    MATH 

    Google Scholar 

  • Bavay, M. & Egger, T. MeteoIO 2.4.2: a preprocessing library for meteorological data. Geosci. Model Dev. 7, 3135–3151 (2014).

    ADS 
    MATH 

    Google Scholar 

  • Alduchov, O. A. & Eskridge, R. E. Improved Magnus form approximation of saturation vapor pressure. J. Appl. Meteorol. 35, 601–609 (1996).

    ADS 

    Google Scholar 

  • Stull, R. Wet-bulb temperature from relative humidity and air temperature. J. Appl. Meteorol. Climatol. 50, 2267–2269 (2011).

    ADS 
    MATH 

    Google Scholar 

  • Global Modeling and Assimilation Office (GMAO). MERRA-2 tavg1_2d_slv_Nx: 2d,1-Hourly,Time-Averaged,Single-Level,Assimilation,Single-Level Diagnostics V5.12.4. Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) (2015).

  • Global Modeling and Assimilation Office (GMAO). MERRA-2 tavg1_2d_flx_Nx: 2d,1-Hourly,Time-Averaged,Single-Level,Assimilation,Single-Level Diagnostics V5.12.4. Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) (2015).

  • Dai, A. Recent climatology, variability, and trends in global surface humidity. J. Clim. 19, 3589–3606 (2006).

    ADS 
    MATH 

    Google Scholar 

  • Dai, A. Global precipitation and thunderstorm frequencies. Part I: Seasonal and interannual variations. J. Clim. 14, 1092–1111 (2001).

    ADS 
    MATH 

    Google Scholar 

  • Gardner, M. W. & Dorling, S. R. Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmos. Environ. 32, 2627–2636 (1998).

    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Popescu, M.-C., Balas, V. E., Perescu-Popescu, L. & Mastorakis, N. Multilayer perceptron and neural networks. WSEAS Trans. Cir. Sys 8, 579–588 (2009).

    MATH 

    Google Scholar 

  • Bentéjac, C., Csörgő, A. & Martínez-Muñoz, G. A comparative analysis of gradient boosting algorithms. Artif. Intell. Rev. 54, 1937–1967 (2021).

    MATH 

    Google Scholar 

  • Kuhn, M. & Wickham, H. Tidymodels: A Collection of Packages for Modeling and Machine Learning Using Tidyverse Principles. R package version 1.2.0. (2020).

  • Couch, S. & Kuhn, M. stacks: Tidy Model Stacking. R package version 1.0.5. (2024).

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *