Machine learning shows a limit to rain-snow partitioning accuracy when using near-surface meteorology

Feiccabrino, J., Graff, W., Lundberg, A., Sandström, N. & Gustafsson, D. Meteorological knowledge useful for the improvement of snow rain separation in surface based models. Hydrology 2, 266–288 (2015).
Harpold, A. A. et al. Rain or snow: hydrologic processes, observations, prediction, and research needs. Hydrol. Earth Syst. Sci. 21, 1–22 (2017).
Google Scholar
United States Army Corps of Engineers. Snow hydrology. US Army North Pac. Div. Portland Or. (1956).
Auer, A. H. Jr. The rain versus snow threshold temperatures. Weatherwise 27, 67–67 (1974).
Google Scholar
Dai, A. Temperature and pressure dependence of the rain-snow phase transition over land and ocean. Geophys. Res. Lett. 35, L12802 (2008).
Jennings, K. S., Winchell, T. S., Livneh, B. & Molotch, N. P. Spatial variation of the rain-snow temperature threshold across the Northern Hemisphere. Nat. Commun. 9, 1148 (2018).
Yu, G. et al. Crowdsourced data reveal shortcomings in precipitation phase products for rain and snow partitioning. Geophys. Res. Lett. 51, e2024GL112853 (2024).
Ding, B. et al. The dependence of precipitation types on surface elevation and meteorological conditions and its parameterization. J. Hydrol. 513, 154–163 (2014).
Google Scholar
Jennings, K. S. et al. Crowdsourced data highlight precipitation phase partitioning variability in rain-snow transition zone. Earth Space Sci. 10, e2022EA002714 (2023).
Google Scholar
Harder, P. & Pomeroy, J. W. Hydrological model uncertainty due to precipitation-phase partitioning methods. Hydrol. Process. 28, 4311–4327 (2014).
Google Scholar
Jennings, K. S. & Molotch, N. P. The sensitivity of modeled snow accumulation and melt to precipitation phase methods across a climatic gradient. Hydrol. Earth Syst. Sci. 23, 3765–3786 (2019).
Google Scholar
Leroux, N. R., Vionnet, V. & Thériault, J. M. Performance of precipitation phase partitioning methods and their impact on snowpack evolution in a humid continental climate. Hydrol. Process. 37, e15028 (2023).
Google Scholar
Motoyama, H. Simulation of seasonal snowcover based on air temperature and precipitation. J. Appl. Meteorol. Climatol. 29, 1104–1110 (1990).
Google Scholar
L’hôte, Y., Chevallier, P., Coudrain, A., Lejeune, Y. & Etchevers, P. Relationship between precipitation phase and air temperature: comparison between the Bolivian Andes and the Swiss Alps/Relation entre phase de précipitation et température de l’air: comparaison entre les Andes Boliviennes et les Alpes Suisses. Hydrol. Sci. J. 50, 997 (2005).
Kienzle, S. W. A new temperature based method to separate rain and snow. Hydrol. Process. 22, 5067–5085 (2008).
Google Scholar
Quick, M. C. & Pipes, A. UBC WATERSHED MODEL/Le modèle du bassin versant UCB. Hydrol. Sci. J. 22, 153–161 (1977).
Tarboton, D. G. & Luce, C. H. Utah Energy Balance Snow Accumulation and Melt Model (UEB). (1996).
Harder, P. & Pomeroy, J. Estimating precipitation phase using a psychrometric energy balance method. Hydrol. Process. 27, 1901–1914 (2013).
Google Scholar
Marks, D., Winstral, A., Reba, M., Pomeroy, J. & Kumar, M. An evaluation of methods for determining during-storm precipitation phase and the rain/snow transition elevation at the surface in a mountain basin. Adv. Water Resour. 55, 98–110 (2013).
Google Scholar
Behrangi, A., Yin, X., Rajagopal, S., Stampoulis, D. & Ye, H. On distinguishing snowfall from rainfall using near-surface atmospheric information: Comparative analysis, uncertainties and hydrologic importance. Q. J. R. Meteorol. Soc. 144, 89–102 (2018).
Google Scholar
Froidurot, S., Zin, I., Hingray, B. & Gautheron, A. Sensitivity of precipitation phase over the swiss alps to different meteorological variables. J. Hydrometeorol. 15, 685–696 (2014).
Google Scholar
Hu, J., Che, T., He, Y., Huang, W. & Yang, X. An intercomparison of empirical schemes for partitioning precipitation phase. J. Hydrol. Reg. Stud. 53, 101757 (2024).
Google Scholar
Huss, M. et al. Toward mountains without permanent snow and ice. Earths Future 5, 418–435 (2017).
Google Scholar
Immerzeel, W. W. et al. Importance and vulnerability of the world’s water towers. Nature 577, 364–369 (2020).
Google Scholar
Siirila-Woodburn, E. R. et al. A low-to-no snow future and its impacts on water resources in the western United States. Nat. Rev. Earth Environ. 2, 800–819 (2021).
Google Scholar
Lynn, E. et al. Technical note: Precipitation-phase partitioning at landscape scales to regional scales. Hydrol. Earth Syst. Sci. 24, 5317–5328 (2020).
Google Scholar
Heggli, A., Hatchett, B., Schwartz, A., Bardsley, T. & Hand, E. Toward snowpack runoff decision support. iScience 25, 104240 (2022).
Google Scholar
Musselman, K. N. et al. Projected increases and shifts in rain-on-snow flood risk over western North America. Nat. Clim. Change 1 (2018).
Polade, S. D., Gershunov, A., Cayan, D. R., Dettinger, M. D. & Pierce, D. W. Precipitation in a warming world: Assessing projected hydro-climate changes in California and other Mediterranean climate regions. Sci. Rep. 7, 10783 (2017).
Google Scholar
Rhoades, A. M. et al. Asymmetric emergence of low-to-no snow in the midlatitudes of the American Cordillera. Nat. Clim. Change 12, 1151–1159 (2022).
Google Scholar
Shulgina, T. et al. Observed and projected changes in snow accumulation and snowline in California’s snowy mountains. Clim. Dyn. 61, 4809–4824 (2023).
Google Scholar
Kratzert, F. et al. Toward improved predictions in ungauged basins: Exploiting the power of machine learning. Water Resour. Res. 55, 11344–11354 (2019).
Google Scholar
Frame, J. M. et al. Deep learning rainfall–runoff predictions of extreme events. Hydrol. Earth Syst. Sci. 26, 3377–3392 (2022).
Google Scholar
McGovern, A. et al. Using Artificial Intelligence to Improve Real-Time Decision-Making for High-Impact Weather. Bull. Am. Meteorol. Soc. 98, 2073–2090 (2017).
Google Scholar
Filipiak, B. C., Bassill, N. P., Corbosiero, K. L., Lang, A. L. & Lazear, R. A. Probabilistic Forecasting Methods of Winter Mixed-Precipitation Events in New York State Utilizing a Random Forest. Artif. Intell. Earth Syst. 2, e220080 (2023).
Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
Google Scholar
Campozano, L. et al. Parsimonious models of precipitation phase derived from random forest knowledge: intercomparing logistic models, neural networks, and random forest models. Water 13, 3022 (2021).
Google Scholar
Arienzo, M. M., Collins, M. & Jennings, K. S. Enhancing engagement of citizen scientists to monitor precipitation phase. Front. Earth Sci. (2021).
Collins, M. et al. Effective engagement while scaling up: lessons from a citizen science program transitioning from single- to multi-region scale. Citiz. Sci.: Theory Pract. 8, 65 (2023).
Google Scholar
Chen, T. & Guestrin, C. XGBoost: A Scalable Tree Boosting System. in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 785–794 (ACM, San Francisco California USA, 2016). https://doi.org/10.1145/2939672.2939785.
Ye, H., Cohen, J. & Rawlins, M. Discrimination of solid from liquid precipitation over northern eurasia using surface atmospheric conditions*. J. Hydrometeorol. 14, 1345–1355 (2013).
Google Scholar
Kratzert, F., Klotz, D., Brenner, C., Schulz, K. & Herrnegger, M. Rainfall–runoff modelling using long short-term memory (LSTM) networks. Hydrol. Earth Syst. Sci. 22, 6005–6022 (2018).
Google Scholar
Meyal, A. Y. et al. Automated Cloud based long short-term memory neural network based SWE prediction. Front. Water 2, 574917 (2020).
Kratzert, F. et al. Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets. Hydrol. Earth Syst. Sci. 23, 5089–5110 (2019).
Google Scholar
Elmore, K. L. et al. MPING: Crowd-sourcing weather reports for research. Bull. Am. Meteorol. Soc. 95, 1335–1342 (2014).
Google Scholar
Landolt, S. D. et al. The impacts of automation on present weather–type observing capabilities across the conterminous united. S. J. Appl. Meteorol. Climatol. 58, 2699–2715 (2019).
Google Scholar
White, S. P., Thornes, J. E. & Chapman, L. A guide to road weather information systems. Version 2, 1–83 (2006).
Google Scholar
Serafin, R. J. & Wilson, J. W. Operational weather radar in the united states: progress and opportunity. Bull. Am. Meteorol. Soc. 81, 501–518 (2000).
Google Scholar
Maddox, R. A., Zhang, J., Gourley, J. J. & Howard, K. W. Weather Radar coverage over the contiguous United States. Weather Forecast. 17, 927–934 (2002).
Google Scholar
Kitzmiller, D., Miller, D., Fulton, R. & Ding, F. Radar and multisensor precipitation estimation techniques in national weather service hydrologic operations. J. Hydrol. Eng. 18, 133–142 (2013).
White, A. B. et al. Developing a performance measure for snow-level forecasts. J. Hydrometeorol. 11, 739–753 (2010).
Google Scholar
Hatchett, B. J. et al. Winter snow level rise in the Northern Sierra Nevada from 2008 to 2017. Water 9, 899 (2017).
Google Scholar
Iguchi, T. et al. GPM/DPR Level-2 Algorithm Theoretical Basis Document. (2018).
Xiong, W., Tang, G., Wang, T., Ma, Z. & Wan, W. Evaluation of IMERG and ERA5 precipitation-phase partitioning on the global scale. Water 14, 1122 (2022).
Google Scholar
Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).
Google Scholar
Skofronick-Jackson, G. et al. The Global Precipitation Measurement (GPM) mission’s scientific achievements and societal contributions: reviewing four years of advanced rain and snow observations. Q. J. R. Meteorol. Soc. 144, 27–48 (2018).
Google Scholar
Huffman, G. et al. NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG) Prepared for: Global Precipitation Measurement (GPM) National Aeronautics and Space Administration (NASA). Algorithm Theoretical Basis Document (ATBD) Version 06 26–26 (2019).
Elmore, K. L., Grams, H. M., Apps, D. & Reeves, H. D. Verifying forecast precipitation type with mPING. Weather Forecast. 30, 656–667 (2015).
Google Scholar
Casellas, E. et al. Surface precipitation phase discrimination in complex terrain. J. Hydrol. 592, 125780 (2021).
Nipen, T. N., Seierstad, I. A., Lussana, C., Kristiansen, J. & Hov, Ø. Adopting citizen observations in operational weather prediction. Bull. Am. Meteorol. Soc. 101, E43–E57 (2020).
Google Scholar
Garcia-Marti, I. et al. From proof-of-concept to proof-of-value: Approaching third-party data to operational workflows of national meteorological services. Int. J. Climatol. 43, 275–292 (2023).
Google Scholar
Heppner, P. O. G. Snow versus Rain: Looking beyond the “Magic” Numbers. Weather Forecast. 7, 683–691 (1992).
Google Scholar
Reeves, H. D., Elmore, K. L., Ryzhkov, A., Schuur, T. & Krause, J. Sources of uncertainty in precipitation-type forecasting. Weather Forecast. 29, 936–953 (2014).
Google Scholar
Minder, J. R. et al. P-Type processes and predictability: The Winter Precipitation Type Research Multiscale Experiment (WINTRE-MIX). Bull. Am. Meteorol. Soc. 104, E1469–E1492 (2023).
Google Scholar
Ikeda, K., Steiner, M. & Thompson, G. Examination of mixed-phase precipitation forecasts from the high-resolution rapid refresh model using surface observations and sounding data. Weather Forecast. 32, 949–967 (2017).
Google Scholar
Lundquist, J., Hughes, M., Gutmann, E. & Kapnick, S. Our skill in modeling mountain rain and snow is bypassing the skill of our observational networks. Bull. Am. Meteorol. Soc. 100, 2473–2490 (2019).
Google Scholar
Vionnet, V. et al. Snow level from post-processing of atmospheric model improves snowfall estimate and snowpack prediction in mountains. Water Resour. Res. 58, e2021WR031778 (2022).
Google Scholar
Reichle, R. H. Data assimilation methods in the Earth sciences. Adv. Water Resour. 31, 1411–1418 (2008).
Google Scholar
Li, X. et al. Land data assimilation: harmonizing theory and data in land surface process studies. Rev. Geophys. 62, e2022RG000801 (2024).
Google Scholar
Hu, X., Liu, F., Qi, Y., Zhang, J. & Li, X. A novel strategy to assimilate category variables in land-use models based on Dirichlet distribution. Environ. Model. Softw. 149, 105324 (2022).
Google Scholar
Reeves, H. D. The uncertainty of precipitation-type observations and its effect on the validation of forecast precipitation type. Weather Forecast. 31, 1961–1971 (2016).
Google Scholar
Cosgrove, B. A. et al. Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project. J. Geophys. Res. Atmos. 108, 8842 (2003).
Xia, Y. et al. Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res. Atmos. 117, D03109 (2012).
Tyralis, H., Papacharalampous, G. & Langousis, A. A brief review of random forests for water scientists and practitioners and their recent history in water resources. Water 11, 910 (2019).
Google Scholar
Chawla, N. V., Bowyer, K. W., Hall, L. O. & Kegelmeyer, W. P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002).
Google Scholar
Bavay, M. & Egger, T. MeteoIO 2.4.2: a preprocessing library for meteorological data. Geosci. Model Dev. 7, 3135–3151 (2014).
Google Scholar
Alduchov, O. A. & Eskridge, R. E. Improved Magnus form approximation of saturation vapor pressure. J. Appl. Meteorol. 35, 601–609 (1996).
Google Scholar
Stull, R. Wet-bulb temperature from relative humidity and air temperature. J. Appl. Meteorol. Climatol. 50, 2267–2269 (2011).
Google Scholar
Global Modeling and Assimilation Office (GMAO). MERRA-2 tavg1_2d_slv_Nx: 2d,1-Hourly,Time-Averaged,Single-Level,Assimilation,Single-Level Diagnostics V5.12.4. Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) (2015).
Global Modeling and Assimilation Office (GMAO). MERRA-2 tavg1_2d_flx_Nx: 2d,1-Hourly,Time-Averaged,Single-Level,Assimilation,Single-Level Diagnostics V5.12.4. Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) (2015).
Dai, A. Recent climatology, variability, and trends in global surface humidity. J. Clim. 19, 3589–3606 (2006).
Google Scholar
Dai, A. Global precipitation and thunderstorm frequencies. Part I: Seasonal and interannual variations. J. Clim. 14, 1092–1111 (2001).
Google Scholar
Gardner, M. W. & Dorling, S. R. Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmos. Environ. 32, 2627–2636 (1998).
Google Scholar
Popescu, M.-C., Balas, V. E., Perescu-Popescu, L. & Mastorakis, N. Multilayer perceptron and neural networks. WSEAS Trans. Cir. Sys 8, 579–588 (2009).
Google Scholar
Bentéjac, C., Csörgő, A. & Martínez-Muñoz, G. A comparative analysis of gradient boosting algorithms. Artif. Intell. Rev. 54, 1937–1967 (2021).
Google Scholar
Kuhn, M. & Wickham, H. Tidymodels: A Collection of Packages for Modeling and Machine Learning Using Tidyverse Principles. R package version 1.2.0. (2020).
Couch, S. & Kuhn, M. stacks: Tidy Model Stacking. R package version 1.0.5. (2024).
link