Predicting metabolic dysfunction associated steatotic liver disease using explainable machine learning methods

0
Predicting metabolic dysfunction associated steatotic liver disease using explainable machine learning methods
  • Riazi, K. et al. The prevalence and incidence of NAFLD worldwide. Lancet Gastroenterol Hepatol. 7(9), 851–861 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Miao, L., Targher, G., Byrne, C. D., Cao, Y. Y. & Zheng, M. H. Current status and future trends of the global burden of MASLD. Trends Endocrinol. Metab. 29, S1043-2760(24)00036–5 (2024).

    Google Scholar 

  • Younossi, Z. M. et al. The economic and clinical burden of nonalcoholic fatty liver disease in the United States and Europe. Hepatology 64(5), 1577–1586 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Feng, G. et al. Recompensation in cirrhosis: Unravelling the evolving natural history of nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol. 21(1), 46–56 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Myers, S. et al. NAFLD and MAFLD as emerging causes of HCC: A populational study. JHEP Rep. 3(2), 100231 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Simon, T. G., Roelstraete, B., Khalili, H., Hagström, H. & Ludvigsson, J. F. Mortality in biopsy-confirmed nonalcoholic fatty liver disease. Gut 70(7), 1375–1382 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Mantovani, A. et al. Non-alcoholic fatty liver disease and risk of fatal and non-fatal cardiovascular events: An updated systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 6(11), 903–913 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Wang, T. Y. et al. Association of metabolic dysfunction-associated fatty liver disease with kidney disease. Nat. Rev. Nephrol. 18(4), 259–268 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Mantovani, A. et al. Non-alcoholic fatty liver disease and increased risk of incident extrahepatic cancers: A meta-analysis of observational cohort studies. Gut 71(4), 778–788 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Biswas, R. et al. Poor liver disease awareness among adults with NAFLD in the United States. Hepatology 72(S1), 403A (2020).

    Google Scholar 

  • Lazarus, J. V. et al. Advancing the global public health agenda for NAFLD: A consensus statement. Nat. Rev. Gastroenterol. Hepatol. 19(1), 60–78 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Rinella, M. E. et al. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. Ann. Hepatol. 29(1), 101133 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Lee, J. et al. Machine learning algorithm improves the detection of NASH (NAS-based) and at-risk NASH: A development and validation study. Hepatology 78(1), 258–271 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Atabaki-Pasdar, N. et al. Predicting and elucidating the etiology of fatty liver disease: A machine learning modeling and validation study in the IMI DIRECT cohorts. PLoS Med. 17(6), e1003149 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sorino, P. et al. Development and validation of a neural network for NAFLD diagnosis. Sci. Rep. 11(1), 20240 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sorino, P. et al. Selecting the best machine learning algorithm to support the diagnosis of non-alcoholic fatty liver disease: A meta learner study. PLoS ONE 15(10), e0240867 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McTeer, M. et al. Machine learning approaches to enhance diagnosis and staging of patients with MASLD using routinely available clinical information. PLoS ONE 19(2), e0299487 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kouvari, M. et al. Liver biopsy-based validation, confirmation and comparison of the diagnostic performance of established and novel non-invasive steatotic liver disease indexes: Results from a large multi-center study. Metabolism 147, 155666 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Verma, N. et al. Machine learning improves the prediction of significant fibrosis in Asian patients with metabolic dysfunction-associated steatotic liver disease – The Gut and Obesity in Asia (GO-ASIA) Study. Aliment Pharmacol. Ther. 59(6), 774–788 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Loomba, R. et al. MASH Resolution Index: Development and validation of a non-invasive score to detect histological resolution of MASH. Gut 73(8), 1343–1349 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Collins, G. S., Reitsma, J. B., Altman, D. G. & Moons, K. G. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement. J. Clin. Epidemiol. 68(2), 134–143 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Rinella, M. E. et al. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 78(6), 1966–1986 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Siddiqui, M. S. et al. Vibration-Controlled transient elastography to assess fibrosis and steatosis in patients with non-alcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 17(1), 156–163 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Cramer, J. S. The Origins of Logistic Regression. Social Science Electronic Publishing, (2003).

  • Quinlan, J. R. Induction of decision trees. Mach. Learn. 1, 81–106 (1986).

    Article 

    Google Scholar 

  • Taunk, K., De, S., Verma, S. & Swetapadma, A. A brief review of nearest neighbor algorithm for learning and classification. In 2019 international conference on intelligent computing and control systems (ICCS), Madurai, India, pp. 1255–1260 (2019).

  • Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Article 

    Google Scholar 

  • Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J. & Scholkopf, B. Support vector machines. IEEE Intell. Syst. Appl. 13(4), 18–28 (1998).

    Article 

    Google Scholar 

  • Tianqi, C. & Carlos, G. XGBoost: A Scalable Tree Boosting System. In 22nd SIGKDD conference on knowledge discovery and data mining, (2016).

  • Bergstra, J. & Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012).

    MathSciNet 

    Google Scholar 

  • Kuhn, M. Building predictive models in R using the caret package. J. Statist. Softw., (2008).

  • Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. Adv. Neural Inform. Process. Syst. 30, (2017).

  • Long, M. T. et al. Development and validation of the framingham steatosis index to identify persons with hepatic steatosis. Clin. Gastroenterol. Hepatol. 14(8), 1172-1180.e2 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bedogni, G. et al. The Fatty Liver Index: A simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2(6), 33 (2006).

    Article 

    Google Scholar 

  • Lee, J. H. et al. Hepatic steatosis index: A simple screening tool reflecting nonalcoholic fatty liver disease. Dig Liver Dis. 42(7), 503–508 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Nabrdalik, K. et al. Machine learning identifies metabolic dysfunction associated steatotic liver disease in patients with diabetes mellitus. J. Clin. Endocrinol. Metab. 8, dgae060 (2024).

    Google Scholar 

  • Solomon, A. et al. Hepatic involvement across the metabolic syndrome spectrum: Non-invasive assessment and risk prediction using machine learning. J. Clin. Med. 12(17), 5657 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nabrdalik, K. et al. Machine learning identification of risk factors for heart failure in patients with diabetes mellitus with metabolic dysfunction associated steatotic liver disease (MASLD): The Silesia Diabetes-Heart Project. Cardiovasc. Diabetol. 22(1), 318 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Y., Sperrin, M., Ashcroft, D. M. & van Staa, T. P. Consistency of variety of machine learning and statistical models in predicting clinical risks of individual patients: Longitudinal cohort study using cardiovascular disease as exemplar. BMJ 371, m3919 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, Q., Meng, Z., Liu, X., Jin, Q. & Su, R. Decision variants for the automatic determination of optimal feature subset in RF-RFE. Genes (Basel) 9(6), 301 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Motamed, N. et al. The ability of the framingham steatosis index (FSI) to predict non-alcoholic fatty liver disease (NAFLD): A cohort study. Clin. Res. Hepatol. Gastroenterol. 45(6), 101567 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Huang, X. et al. Validation of the fatty liver index for nonalcoholic fatty liver disease in middle-aged and elderly Chinese. Medicine (Baltimore) 94(40), e1682 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Kim, J. H., Kwon, S. Y., Lee, S. W. & Lee, C. H. Validation of fatty liver index and lipid accumulation product for predicting fatty liver in Korean population. Liver Int. 31(10), 1600–1601 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Chen, L. W., Huang, P. R., Chien, C. H., Lin, C. L. & Chien, R. N. A community-based study on the application of fatty liver index in screening subjects with nonalcoholic fatty liver disease. J. Formos. Med. Assoc. 119(1 Pt 1), 173–181 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Chen, L. D. et al. Validation of fatty liver index and hepatic steatosis index for screening of non-alcoholic fatty liver disease in adults with obstructive sleep apnea hypopnea syndrome. Chin. Med. J. (Engl). 132(22), 2670–2676 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Valenti, L. et al. Venesection for non-alcoholic fatty liver disease unresponsive to lifestyle counselling–a propensity score-adjusted observational study. QJM 104(2), 141–149 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Zhang, H., Zhang, E. & Hu, H. Role of ferroptosis in non-alcoholic fatty liver disease and its implications for therapeutic strategies. Biomedicines 9(11), 1660 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, K. et al. Iron status and non-alcoholic fatty liver disease: A Mendelian randomization study. Nutrition 118, 112295 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Wang, M. et al. A combined association of serum uric acid, alanine aminotransferase and waist circumference with non-alcoholic fatty liver disease: A community-based study. PeerJ 10(4), e13022 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wei, F. J. et al. Higher serum uric acid level predicts non-alcoholic fatty liver disease: A 4-year prospective cohort study. Front. Endocrinol. 11, 179 (2020).

    Article 

    Google Scholar 

  • Lanaspa, M. A. et al. Uric acid stimulates fructokinase and accelerates fructose metabolism in the development of fatty liver. PLoS ONE 7(10), e47948 (2012).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *