Predicting metabolic dysfunction associated steatotic liver disease using explainable machine learning methods

Riazi, K. et al. The prevalence and incidence of NAFLD worldwide. Lancet Gastroenterol Hepatol. 7(9), 851–861 (2022).
Google Scholar
Miao, L., Targher, G., Byrne, C. D., Cao, Y. Y. & Zheng, M. H. Current status and future trends of the global burden of MASLD. Trends Endocrinol. Metab. 29, S1043-2760(24)00036–5 (2024).
Younossi, Z. M. et al. The economic and clinical burden of nonalcoholic fatty liver disease in the United States and Europe. Hepatology 64(5), 1577–1586 (2016).
Google Scholar
Feng, G. et al. Recompensation in cirrhosis: Unravelling the evolving natural history of nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol. 21(1), 46–56 (2024).
Google Scholar
Myers, S. et al. NAFLD and MAFLD as emerging causes of HCC: A populational study. JHEP Rep. 3(2), 100231 (2021).
Google Scholar
Simon, T. G., Roelstraete, B., Khalili, H., Hagström, H. & Ludvigsson, J. F. Mortality in biopsy-confirmed nonalcoholic fatty liver disease. Gut 70(7), 1375–1382 (2020).
Google Scholar
Mantovani, A. et al. Non-alcoholic fatty liver disease and risk of fatal and non-fatal cardiovascular events: An updated systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 6(11), 903–913 (2021).
Google Scholar
Wang, T. Y. et al. Association of metabolic dysfunction-associated fatty liver disease with kidney disease. Nat. Rev. Nephrol. 18(4), 259–268 (2022).
Google Scholar
Mantovani, A. et al. Non-alcoholic fatty liver disease and increased risk of incident extrahepatic cancers: A meta-analysis of observational cohort studies. Gut 71(4), 778–788 (2022).
Google Scholar
Biswas, R. et al. Poor liver disease awareness among adults with NAFLD in the United States. Hepatology 72(S1), 403A (2020).
Lazarus, J. V. et al. Advancing the global public health agenda for NAFLD: A consensus statement. Nat. Rev. Gastroenterol. Hepatol. 19(1), 60–78 (2022).
Google Scholar
Rinella, M. E. et al. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. Ann. Hepatol. 29(1), 101133 (2024).
Google Scholar
Lee, J. et al. Machine learning algorithm improves the detection of NASH (NAS-based) and at-risk NASH: A development and validation study. Hepatology 78(1), 258–271 (2023).
Google Scholar
Atabaki-Pasdar, N. et al. Predicting and elucidating the etiology of fatty liver disease: A machine learning modeling and validation study in the IMI DIRECT cohorts. PLoS Med. 17(6), e1003149 (2020).
Google Scholar
Sorino, P. et al. Development and validation of a neural network for NAFLD diagnosis. Sci. Rep. 11(1), 20240 (2021).
Google Scholar
Sorino, P. et al. Selecting the best machine learning algorithm to support the diagnosis of non-alcoholic fatty liver disease: A meta learner study. PLoS ONE 15(10), e0240867 (2020).
Google Scholar
McTeer, M. et al. Machine learning approaches to enhance diagnosis and staging of patients with MASLD using routinely available clinical information. PLoS ONE 19(2), e0299487 (2024).
Google Scholar
Kouvari, M. et al. Liver biopsy-based validation, confirmation and comparison of the diagnostic performance of established and novel non-invasive steatotic liver disease indexes: Results from a large multi-center study. Metabolism 147, 155666 (2023).
Google Scholar
Verma, N. et al. Machine learning improves the prediction of significant fibrosis in Asian patients with metabolic dysfunction-associated steatotic liver disease – The Gut and Obesity in Asia (GO-ASIA) Study. Aliment Pharmacol. Ther. 59(6), 774–788 (2024).
Google Scholar
Loomba, R. et al. MASH Resolution Index: Development and validation of a non-invasive score to detect histological resolution of MASH. Gut 73(8), 1343–1349 (2024).
Google Scholar
Collins, G. S., Reitsma, J. B., Altman, D. G. & Moons, K. G. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement. J. Clin. Epidemiol. 68(2), 134–143 (2015).
Google Scholar
Rinella, M. E. et al. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 78(6), 1966–1986 (2023).
Google Scholar
Siddiqui, M. S. et al. Vibration-Controlled transient elastography to assess fibrosis and steatosis in patients with non-alcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 17(1), 156–163 (2019).
Google Scholar
Cramer, J. S. The Origins of Logistic Regression. Social Science Electronic Publishing, (2003).
Quinlan, J. R. Induction of decision trees. Mach. Learn. 1, 81–106 (1986).
Google Scholar
Taunk, K., De, S., Verma, S. & Swetapadma, A. A brief review of nearest neighbor algorithm for learning and classification. In 2019 international conference on intelligent computing and control systems (ICCS), Madurai, India, pp. 1255–1260 (2019).
Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
Google Scholar
Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J. & Scholkopf, B. Support vector machines. IEEE Intell. Syst. Appl. 13(4), 18–28 (1998).
Google Scholar
Tianqi, C. & Carlos, G. XGBoost: A Scalable Tree Boosting System. In 22nd SIGKDD conference on knowledge discovery and data mining, (2016).
Bergstra, J. & Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012).
Google Scholar
Kuhn, M. Building predictive models in R using the caret package. J. Statist. Softw., (2008).
Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. Adv. Neural Inform. Process. Syst. 30, (2017).
Long, M. T. et al. Development and validation of the framingham steatosis index to identify persons with hepatic steatosis. Clin. Gastroenterol. Hepatol. 14(8), 1172-1180.e2 (2016).
Google Scholar
Bedogni, G. et al. The Fatty Liver Index: A simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2(6), 33 (2006).
Google Scholar
Lee, J. H. et al. Hepatic steatosis index: A simple screening tool reflecting nonalcoholic fatty liver disease. Dig Liver Dis. 42(7), 503–508 (2010).
Google Scholar
Nabrdalik, K. et al. Machine learning identifies metabolic dysfunction associated steatotic liver disease in patients with diabetes mellitus. J. Clin. Endocrinol. Metab. 8, dgae060 (2024).
Solomon, A. et al. Hepatic involvement across the metabolic syndrome spectrum: Non-invasive assessment and risk prediction using machine learning. J. Clin. Med. 12(17), 5657 (2023).
Google Scholar
Nabrdalik, K. et al. Machine learning identification of risk factors for heart failure in patients with diabetes mellitus with metabolic dysfunction associated steatotic liver disease (MASLD): The Silesia Diabetes-Heart Project. Cardiovasc. Diabetol. 22(1), 318 (2023).
Google Scholar
Li, Y., Sperrin, M., Ashcroft, D. M. & van Staa, T. P. Consistency of variety of machine learning and statistical models in predicting clinical risks of individual patients: Longitudinal cohort study using cardiovascular disease as exemplar. BMJ 371, m3919 (2020).
Google Scholar
Chen, Q., Meng, Z., Liu, X., Jin, Q. & Su, R. Decision variants for the automatic determination of optimal feature subset in RF-RFE. Genes (Basel) 9(6), 301 (2018).
Google Scholar
Motamed, N. et al. The ability of the framingham steatosis index (FSI) to predict non-alcoholic fatty liver disease (NAFLD): A cohort study. Clin. Res. Hepatol. Gastroenterol. 45(6), 101567 (2021).
Google Scholar
Huang, X. et al. Validation of the fatty liver index for nonalcoholic fatty liver disease in middle-aged and elderly Chinese. Medicine (Baltimore) 94(40), e1682 (2015).
Google Scholar
Kim, J. H., Kwon, S. Y., Lee, S. W. & Lee, C. H. Validation of fatty liver index and lipid accumulation product for predicting fatty liver in Korean population. Liver Int. 31(10), 1600–1601 (2011).
Google Scholar
Chen, L. W., Huang, P. R., Chien, C. H., Lin, C. L. & Chien, R. N. A community-based study on the application of fatty liver index in screening subjects with nonalcoholic fatty liver disease. J. Formos. Med. Assoc. 119(1 Pt 1), 173–181 (2020).
Google Scholar
Chen, L. D. et al. Validation of fatty liver index and hepatic steatosis index for screening of non-alcoholic fatty liver disease in adults with obstructive sleep apnea hypopnea syndrome. Chin. Med. J. (Engl). 132(22), 2670–2676 (2019).
Google Scholar
Valenti, L. et al. Venesection for non-alcoholic fatty liver disease unresponsive to lifestyle counselling–a propensity score-adjusted observational study. QJM 104(2), 141–149 (2011).
Google Scholar
Zhang, H., Zhang, E. & Hu, H. Role of ferroptosis in non-alcoholic fatty liver disease and its implications for therapeutic strategies. Biomedicines 9(11), 1660 (2021).
Google Scholar
Sun, K. et al. Iron status and non-alcoholic fatty liver disease: A Mendelian randomization study. Nutrition 118, 112295 (2024).
Google Scholar
Wang, M. et al. A combined association of serum uric acid, alanine aminotransferase and waist circumference with non-alcoholic fatty liver disease: A community-based study. PeerJ 10(4), e13022 (2022).
Google Scholar
Wei, F. J. et al. Higher serum uric acid level predicts non-alcoholic fatty liver disease: A 4-year prospective cohort study. Front. Endocrinol. 11, 179 (2020).
Google Scholar
Lanaspa, M. A. et al. Uric acid stimulates fructokinase and accelerates fructose metabolism in the development of fatty liver. PLoS ONE 7(10), e47948 (2012).
Google Scholar
link