Machine learning insights into scapular stabilization for alleviating shoulder pain in college students

Aguilar, M. et al. Jan., Which Multimodal Physiotherapy Treatment Is the Most Effective in People with Shoulder Pain? A Systematic Review and Meta-Analyses, Healthcare, vol. 12, no. 12, Art. no. 12, doi: (2024). https://doi.org/10.3390/healthcare12121234
Östör, A. J. K., Richards, C. A., Prevost, A. T., Speed, C. A. & Hazleman, B. L. Diagnosis and relation to general health of shoulder disorders presenting to primary care, Rheumatology, vol. 44, no. 6, pp. 800–805, Jun. doi: (2005). https://doi.org/10.1093/rheumatology/keh598
May, S. An outcome audit for musculoskeletal patients in primary care. Physiother Theory Pract. (Jan. 2003).
Gelinas, C. P., Dabbagh, A. & MacDermid, J. C. Understanding the Impact of Upper Extremity Musculoskeletal and Comorbid Health conditions on Physical and Mental Health and Quality of Life in 956 adults aged 50 to 65. Crit. Rev. Phys. Rehabil Med. 37 (1). (2025).
Rungruangbaiyok, C. et al. Prevalence and Associated Factors of Musculoskeletal Disorders among older patients treated at Walailak University Physical Therapy Clinic in Thailand: a retrospective study. Int. J. Environ. Res. Public. Health. 21, (Sep. 2024). 9, Art. 9.
Muñoz, T. V. et al. Oct., Comparative evaluation of the efficacy of therapeutic exercise versus myofascial trigger point therapy in the treatment of shoulder tendinopathies: a randomised controlled trial, BMJ Open Sport Exerc. Med., vol. 10, no. 4, doi: (2024). https://doi.org/10.1136/bmjsem-2024-002043
Cho, M. S. et al. Changes in shoulder function and muscle strength following rehabilitation exercise program in male patients with forward shoulder posture undergoing rotator cuff repair. BMC Musculoskelet. Disord. 25 (1), 776. (Oct. 2024).
Busch, A., Sarver, X. & Comstock, K. Electromyographic analysis of shoulder-complex muscles performing overhead presses with dumbbell, kettlebell, and bottom-up kettlebell. J. Bodyw. Mov. Ther. 37, 308–314. (Jan. 2024).
Tang, L. et al. Sep., Efficacy of Targeted Scapular Stabilization Exercise Versus Conventional Exercise for Patients With Shoulder Pain: A Randomized Clinical Trial, Am. J. Phys. Med. Rehabil., vol. 103, no. 9, p. 771, doi: (2024). https://doi.org/10.1097/PHM.0000000000002431
Chen, Y. et al. Effects of scapular treatment on chronic neck pain: a systematic review and meta-analysis of randomized controlled trials, BMC Musculoskelet. Disord., vol. 25, no. 1, p. 252, Apr. doi: (2024). https://doi.org/10.1186/s12891-024-07220-8
Sun, X., Chai, L., Huang, Q., Zhou, H. & Liu, H. Effects of exercise combined with cervicothoracic spine self-mobilization on chronic non-specific neck pain. Sci. Rep. 14 (1), 5298. (Mar. 2024).
Cunha, B., Ferreira, R. & Sousa, A. S. P. Home-Based Rehabilitation of the Shoulder Using Auxiliary Systems and Artificial Intelligence: An Overview, Sensors, vol. 23, no. 16, Art. no. 16, Jan. doi: (2023). https://doi.org/10.3390/s23167100
Reddy, A. K. S. and Improving Preventative Care and Health outcomes for patients with chronic diseases using Big Data-Driven insights and Predictive modeling. Int. J. Appl. Health Care Anal., 9, 2, Art. 2, Feb. 2024.
Caldo, D. et al. Machine learning algorithms distinguish discrete digital emotional fingerprints for web pages related to back pain. Sci. Rep. 13 (1), 4654 (2023).
Google Scholar
Wu, Y., Chen, B., Cai, H. H., Wang, D. & Yuan, Q. Evolutionary game theoretic approach with deep learning for health decision-making in critical environment. Ann. Oper. Res. (Oct. 2024).
Cuff, A. V. Understanding the use of diagnostic imaging and its role in decision-making in musculoskeletal pain conditions affecting the lower back, knee, and shoulder, doctoral, Manchester Metropolitan University, Accessed: Oct. 21, 2024. [Online]. Available: (2024). https://e-space.mmu.ac.uk/634014/
tarekhemdan tarekhemdan/Trunk_Movement. (Jul. 05, 2023). Python. Accessed: Jul. 21, 2023. [Online]. Available: https://github.com/tarekhemdan/Trunk_Movement
Shieh, G., Jan, S. & Randles, R. On power and sample size determinations for the Wilcoxon–Mann–Whitney test. J. Nonparametric Stat. 18 (1), 33–43 (2006).
Google Scholar
Universität Düsseldorf: G*Power. Accessed: Jul. 21, 2023. [Online]. Available: https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower
Hjermstad, M. J. et al. Studies comparing numerical rating scales, verbal rating scales, and visual analogue scales for assessment of pain intensity in adults: a systematic literature review. J. Pain Symptom Manage. 41 (6), 1073–1093 (2011).
Google Scholar
Kalra, N., Seitz, A. L., Boardman, N. D. & Michener, L. A. Effect of Posture on Acromiohumeral Distance With Arm Elevation in Subjects With and Without Rotator Cuff Disease Using Ultrasonography, J. Orthop. Sports Phys. Ther., vol. 40, no. 10, pp. 633–640, Oct. doi: (2010). https://doi.org/10.2519/jospt.2010.3155
Azzoni, R. & Cabitza, P. Sonographic versus radiographic measurement of the subacromial space width. Chir. Organi Mov. 89 (2), 143–150 (2004).
Google Scholar
Madson, T. J., Youdas, J. W. & Suman, V. J. Reproducibility of lumbar spine range of motion measurements using the back range of motion device. J. Orthop. Sports Phys. Ther. 29 (8), 470–477 (1999).
Google Scholar
Mohamed, H. T., Youssef, E. F., Gad, A. M. M., Al Hamaky, D. M. & THE PREDICTION OF DISABILITY TO SCAPULAR TRAINING IN PATIENTS WITH SHOULDER IMPINGEMENT SYNDROME., Accessed: Nov. 04, 2023. [Online]. Available: https://ejas.journals.ekb.eg/jufile?ar_sfile=445999
Ravichandran, H. et al. Effect of scapular stabilization exercise program in patients with subacromial impingement syndrome: a systematic review. J. Exerc. Rehabil. 16 (3), 216 (2020).
Google Scholar
Lee, J. H., Cynn, H., Yi, C. H., Kwon, O. & Yoon, T. L. Predictor variables for forward scapular posture including posterior shoulder tightness. J. Bodyw. Mov. Ther. 19 (2), 253–260 (2015).
Google Scholar
Turgut, E., Duzgun, I. & Baltaci, G. Effects of scapular stabilization exercise training on scapular kinematics, disability, and pain in subacromial impingement: a randomized controlled trial. Arch. Phys. Med. Rehabil. 98 (10), 1915–1923 (2017).
Google Scholar
Moezy, A., Sepehrifar, S. & Dodaran, M. S. The effects of scapular stabilization based exercise therapy on pain, posture, flexibility and shoulder mobility in patients with shoulder impingement syndrome: a controlled randomized clinical trial. Med. J. Islam Repub. Iran. 28, 87 (2014).
Google Scholar
Asgarkhani, N., Kazemi, F. & Jankowski, R. Machine learning-based prediction of residual drift and seismic risk assessment of steel moment-resisting frames considering soil-structure interaction. Comput. Struct. 289, 107181 (2023).
Google Scholar
Avinash, M., Nithya, M. & Aravind, S. Automated Machine Learning-Algorithm Selection with Fine-Tuned Parameters, in 6th International Conference on Intelligent Computing and Control Systems (ICICCS), IEEE, 2022, pp. 1175–1180. Accessed: Nov. 04, 2023. [Online]. Available: (2022). https://ieeexplore.ieee.org/abstract/document/9788236/
Mehrizi, S., Tsakmalis, A., Chatzinotas, S. & Ottersten, B. A feature-based Bayesian method for content popularity prediction in edge-caching networks, in IEEE Wireless Communications and Networking Conference (WCNC), IEEE, 2019, pp. 1–6. Accessed: Nov. 04, 2023. [Online]. Available: (2019). https://ieeexplore.ieee.org/abstract/document/8885590/
Chittilappilly, R. M., Suresh, S. & Shanmugam, S. A Comparative Analysis of Optimizing Medical Insurance Prediction Using Genetic Algorithm and Other Machine Learning Algorithms, in International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI), IEEE, 2023, pp. 1–6. Accessed: Nov. 04, 2023. [Online]. Available: (2023). https://ieeexplore.ieee.org/abstract/document/10199979/
McCann, L. & Welsch, R. E. Robust variable selection using least angle regression and elemental set sampling. Comput. Stat. Data Anal. 52 (1), 249–257 (2007).
Google Scholar
Lin, A., Kolluri, S. & Sheehan, D. CALCULATING LATIN READABILITY SCORES USING LINEAR REGRESSION, (2021).
Duan, S. et al. LightGBM low-temperature prediction model based on LassoCV feature selection. Math. Probl. Eng. 2021, 1–8 (2021).
Google Scholar
Wang, H., Wang, P. & Zhang, Y. Wind power prediction based on multiple feature extraction by LassoLarsIC and long short-term memory, in International Conference on Algorithms, Microchips and Network Applications, SPIE, pp. 312–319. Accessed: Nov. 04, 2023. [Online]. Available: (2022). https://doi.org/10.1117/12.2636486.short
Rajan, M. P. An efficient Ridge regression algorithm with Parameter Estimation for Data Analysis in Machine Learning. SN Comput. Sci. 3 (2), 171. (Mar. 2022).
Shi, Q., Abdel-Aty, M. & Lee, J. A bayesian ridge regression analysis of congestion’s impact on urban expressway safety. Accid. Anal. Prev. 88, 124–137 (2016).
Google Scholar
Kallummil, S. & Kalyani, S. Supplementary Materials: Signal and Noise Statistics Oblivious Orthogonal Matching Pursuit, Accessed: Nov. 04, 2023. [Online]. Available: http://proceedings.mlr.press/v80/kallummil18a/kallummil18a-supp.pdf
Aslam, F., Alyousef, R., Awan, H. H. & Javed, M. F. Forecasting the self-healing capacity of engineered cementitious composites using bagging regressor and stacking regressor, in Structures, Elsevier, pp. 1717–1728. Accessed: Nov. 04, 2023. [Online]. Available: (2023). https://www.sciencedirect.com/science/article/pii/S2352012423007439
McDonald, G. C. Ridge regression, WIREs Comput. Stat., vol. 1, no. 1, pp. 93–100, Jul. doi: (2009). https://doi.org/10.1002/wics.14
Aalen, O. O. A linear regression model for the analysis of life times, Stat. Med., vol. 8, no. 8, pp. 907–925, Aug. doi: (1989). https://doi.org/10.1002/sim.4780080803
Januaviani, T. M. A., Gusriani, N., Joebaedi, K., Supian, S. & Subiyanto, S. The best model of LASSO with the LARS (least angle regression and shrinkage) algorithm using Mallow’s cp. World Sci. News. no. 116, 245–252 (2019).
Patel, R. S. & Akolekar, H. D. Machine-learning based optimisation of a Biomimiced Herringbone microstructure for Superior Aerodynamic performance. bioRxiv, pp. 2022–2009, (2022).
González-Briones, A., Hernández, G., Pinto, T., Vale, Z. & Corchado, J. M. A review of the main machine learning methods for predicting residential energy consumption, in 16th International Conference on the European Energy Market (EEM), IEEE, 2019, pp. 1–6. Accessed: Nov. 04, 2023. [Online]. Available: (2019). https://ieeexplore.ieee.org/abstract/document/8916406/
Graw, J. H., Wood, W. T. & Phrampus, B. J. Predicting global marine sediment density using the random forest regressor machine learning algorithm. J. Geophys. Res. Solid Earth, 126, 1, p. e2020JB020135, 2021.
John, V., Liu, Z., Guo, C., Mita, S. & Kidono, K. Real-time Lane Estimation using deep features and Extra Trees Regression, in Image and Video Technology, vol. 9431, (eds Bräunl, T., McCane, B., Rivera, M. & Yu, X.) in Lecture Notes in Computer Science, vol. 9431., Cham: Springer International Publishing, 721–733. doi: (2016).
Google Scholar
Azmi, C. S. A. M. et al. Univariate and Multivariate Regression models for short-term wind energy forecasting. Inf. Sci. Lett. 11 (2), 465–473 (2022).
Google Scholar
Abd El-Hafeez, T., Shams, M. Y., Elshaier, Y. A. M. M., Farghaly, H. M. & Hassanien, A. E. Harnessing machine learning to find synergistic combinations for FDA-approved cancer drugs, Sci. Rep., vol. 14, no. 1, Art. no. 1, Jan. doi: (2024). https://doi.org/10.1038/s41598-024-52814-w
Hassan, E., Elbedwehy, S., Shams, M. Y., Abd El-Hafeez, T. & El-Rashidy, N. Optimizing poultry audio signal classification with deep learning and burn layer fusion. J. Big Data. 11 (1), 135. (Sep. 2024).
Abdel Hady, D. A., Mabrouk, O. M. & Abd El-Hafeez, T. Employing machine learning for enhanced abdominal fat prediction in cavitation post-treatment. Sci. Rep. 14 (1), 11004 (2024).
Google Scholar
Avhale, K. Understanding of Optuna-A Machine Learning Hyperparameter Optimization Framework, Medium. Accessed: Oct. 21, [Online]. Available: (2023). https://medium.com/@kalyaniavhale7/understanding-of-optuna-a-machine-learning-hyperparameter-optimization-framework-ed31ebb335b9
López, F. HyperOpt: Hyperparameter Tuning based on Bayesian Optimization, Medium. Accessed: Oct. 21, [Online]. Available: (2023). https://towardsdatascience.com/hyperopt-hyperparameter-tuning-based-on-bayesian-optimization-7fa32dffaf29
Mottafegh, A., Ahn, G. N. & Kim, D. P. Meta optimization based on real-time benchmarking of multiple surrogate models for autonomous flow synthesis. Lab. Chip. 23 (6), 1613–1621 (2023).
Google Scholar
Claesen, M., Simm, J., Popovic, D. & Moor, B. Hyperparameter tuning in python using optunity, in Proceedings of the international workshop on technical computing for machine learning and mathematical engineering, p. 3. Accessed: Nov. 04, 2023. [Online]. Available: (2014). https://www.academia.edu/download/93669707/abstract-tcmm2014.pdf
Hertel, L., Baldi, P. & Gillen, D. L. Quantity vs. Quality: On Hyperparameter Optimization for Deep Reinforcement Learning, Jul. 30, arXiv: arXiv:2007.14604. Accessed: Nov. 04, 2023. [Online]. Available: (2020). http://arxiv.org/abs/2007.14604
Akiba, T., Sano, S., Yanase, T., Ohta, T. & Koyama, M. Optuna: A Next-generation Hyperparameter Optimization Framework, in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage AK USA: ACM, Jul. pp. 2623–2631. doi: (2019). https://doi.org/10.1145/3292500.3330701
Abdel Hady, D. A. & Abd El-Hafeez, T. Revolutionizing core muscle analysis in female sexual dysfunction based on machine learning, Sci. Rep., vol. 14, no. 1, Art. no. 1, Feb. doi: (2024). https://doi.org/10.1038/s41598-024-54967-0
Koshiry, A. M. E., Eliwa, E., El-Hafeez, T. A. & Omar, A. Classification of University Excellence: A Multi-dimensional Exploration of Ranking Criteria Using Data Science and Visualization Technology, in Proceedings of the 10th International Conference on Advanced Intelligent Systems and Informatics 2024, A. E. Hassanien, A. Darwish, M. F. Tolba, and V. Snasel, Eds., Cham: Springer Nature Switzerland, pp. 209–220. doi: (2024). https://doi.org/10.1007/978-3-031-71619-5_18
Eliwa, E. H. I., El Koshiry, A. M., Abd El-Hafeez, T. & Omar, A. Optimal gasoline price predictions: leveraging the ANFIS Regression Model. Int. J. Intell. Syst. 2024 (1), 8462056. (Jan. 2024).
Bibi, S., Tsoumakas, G., Stamelos, I. & Vlahavas, I. Regression via classification applied on software defect estimation. Expert Syst. Appl. 3, 2091–2101. (2008).
Google Scholar
Mostafa, G., Mahmoud, H. & Abd El-Hafeez, T. The power of deep learning in simplifying feature selection for hepatocellular carcinoma: a review. BMC Med. Inf. Decis. Mak. 24 (1), 287. (Oct. 2024).
Mostafa, G., Mahmoud, H., Abd El-Hafeez, T. & ElAraby, M. E. Feature reduction for hepatocellular carcinoma prediction using machine learning algorithms. J. Big Data. 11, 88. (2024). no. 1.
Google Scholar
Farghaly, H. M., Ali, A. A. & El-Hafeez, T. A. Developing an efficient method for automatic threshold detection based on Hybrid Feature Selection Approach, in Artificial Intelligence and Bioinspired Computational Methods, (ed Silhavy, R.) Cham: Springer International Publishing, 56–72. doi: (2020).
Google Scholar
link