Learning vision-based agile flight via differentiable physics

Schedl, D. C., Kurmi, I. & Bimber, O. An autonomous drone for search and rescue in forests using airborne optical sectioning. Sci. Robot. 6, 1188 (2021).
Google Scholar
Xing, J., Cioffi, G., Hidalgo-Carrió, J. & Scaramuzza, D. Autonomous power line inspection with drones via perception-aware MPC. In Proc. 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 1086–1093 (IEEE, 2023).
Sage, A. T. et al. Testing the delivery of human organ transportation with drones in the real world. Sci. Robot. 7, 5798 (2022).
Google Scholar
Giusti, A. et al. A machine learning approach to visual perception of forest trails for mobile robots. IEEE Robot. Autom. Lett. 1, 661–667 (2015).
Google Scholar
Gao, F. et al. Teach-repeat-replan: a complete and robust system for aggressive flight in complex environments. IEEE Trans. Robot. 36, 1526–1545 (2020).
Google Scholar
Zhou, X., Wang, Z., Ye, H., Xu, C. & Gao, F. Ego-planner: an ESDF-free gradient-based local planner for quadrotors. IEEE Robot. Autom. Lett. 6, 478–485 (2020).
Google Scholar
Zhou, X. et al. Swarm of micro flying robots in the wild. Sci. Robot. 7, 5954 (2022).
Google Scholar
Loquercio, A. et al. Learning high-speed flight in the wild. Sci. Robot. 6, 5810 (2021).
Google Scholar
Zhang, Z. & Scaramuzza, D. Perception-aware receding horizon navigation for MAVs. In Proc. 2018 IEEE International Conference on Robotics and Automation (ICRA) 2534–2541 (IEEE, 2018).
Maimone, M. W., Leger, P. C. & Biesiadecki, J. J. Overview of the Mars Exploration Rovers’ autonomous mobility and vision capabilities. In Proc. IEEE International Conference on Robotics and Automation (ICRA) Space Robotics Workshop (IEEE, 2007).
Hwangbo, J. et al. Learning agile and dynamic motor skills for legged robots. Sci. Robot. 4, 5872 (2019).
Google Scholar
Miki, T. et al. Learning robust perceptive locomotion for quadrupedal robots in the wild. Sci. Robot. 7, 2822 (2022).
Google Scholar
Choi, S. et al. Learning quadrupedal locomotion on deformable terrain. Sci. Robot. 8, 2256 (2023).
Google Scholar
Song, Y., Romero, A., Mueller, M., Koltun, V. & Scaramuzza, D. Reaching the limit in autonomous racing: optimal control versus reinforcement learning. Sci. Robot. (2023).
Kaufmann, E. et al. Deep drone acrobatics. In Proc. Robotics: Science and Systems (eds Toussaint, M. et al.) (RSS Foundation, 2020).
Song, Y., Shi, K., Penicka, R. & Scaramuzza, D. Learning perception-aware agile flight in cluttered environments. In Proc. 2023 IEEE International Conference on Robotics and Automation (ICRA) 1989–1995 (IEEE, 2023).
Sadeghi, F. & Levine, S. CAD2RL: real single-image flight without a single real image. In Proc. Robotics: Science and Systems XIII (eds Amato, A. et al.) (RSS Foundation, 2017).
Schulman, J., Wolski, F., Dhariwal, P., Radford, A. & Klimov, O. Proximal policy optimization algorithms. Preprint at (2017).
Foehn, P. et al. Agilicious: open-source and open-hardware agile quadrotor for vision-based flight. Sci. Robot. 7, 6259 (2022).
Google Scholar
Shahzad, M. M. et al. A review of swarm robotics in a nutshell. Drones 7, 269 (2023).
Google Scholar
Kegeleirs, M., Grisetti, G. & Birattari, M. Swarm SLAM: challenges and perspectives. Front. Robot. AI 8, 618268 (2021).
Google Scholar
Delmerico, J., Cieslewski, T., Rebecq, H., Faessler, M. & Scaramuzza, D. Are we ready for autonomous drone racing? The UZH-FPV drone racing dataset. In Proc. 2019 International Conference on Robotics and Automation (ICRA) 6713–6719 (IEEE, 2019).
Cioffi, G., Bauersfeld, L., Kaufmann, E. & Scaramuzza, D. Learned inertial odometry for autonomous drone racing. IEEE Robot. Autom. Lett. 8, 2684–2691 (2023).
Google Scholar
Kaufmann, E. et al. Champion-level drone racing using deep reinforcement learning. Nature 620, 982–987 (2023).
Google Scholar
Qin, T., Li, P. & Shen, S. VINS-Mono: a robust and versatile monocular visual-inertial state estimator. IEEE Trans. Robot. 34, 1004–1020 (2018).
Google Scholar
Selvaraju, R. R. et al. Grad-cam: visual explanations from deep networks via gradient-based localization. In Proc. IEEE International Conference on Computer Vision (eds Cucchiara, R. et al.) 618–626 (IEEE, 2017).
Song, Y., Naji, S., Kaufmann, E., Loquercio, A. & Scaramuzza, D. Flightmare: a flexible quadrotor simulator. In Proc. Conference on Robot Learning (eds Faust, A. et al.) 1147–1157 (PMLR, 2021).
Zhou, B., Gao, F., Wang, L., Liu, C. & Shen, S. Robust and efficient quadrotor trajectory generation for fast autonomous flight. IEEE Robot. Autom. Lett. 4, 3529–3536 (2019).
Google Scholar
Florence, P., Carter, J. & Tedrake, R. Integrated perception and control at high speed: evaluating collision avoidance maneuvers without maps. In Proc. 12th Workshop on the Algorithmic Foundations of Robotics (eds Goldberg, K. et al.) 304–319 (Springer, 2020).
Shah, S., Dey, D., Lovett, C. & Kapoor, A. in Field and Service Robotics (eds Hutter, M. & Siegwart, R.) Ch. 40 (Springer, 2017).
Ross, S., Gordon, G. & Bagnell, D. A reduction of imitation learning and structured prediction to no-regret online learning. In Proc. 14th International Conference on Artificial Intelligence and Statistics (eds Gordon, G. et al.) 627–635 (PMLR, 2011).
Gurumurthy, S., Kolter, J. Z. & Manchester, Z. Deep off-policy iterative learning control. In Proc. 5th Annual Learning for Dynamics & Control Conference (eds Matni, N. et al.) 639–652 (PMLR, 2023).
Cho, K. et al. Learning phrase representations using RNN encoder–decoder for statistical machine translation. In Proc. 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) (eds Moschitti, A. et al.) 1724–1734 (Association for Computational Linguistics, 2014).
Suh, H. J., Simchowitz, M., Zhang, K. & Tedrake, R. Do differentiable simulators give better policy gradients? In Proc. International Conference on Machine Learning (eds Chaudhuri, K. et al.) 20668–20696 (PMLR, 2022).
Haarnoja, T., Zhou, A., Abbeel, P. & Levine, S. Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor. In Proc. International Conference on Machine Learning (eds Dy, J. et al.) 1861–1870 (PMLR, 2018).
Metz, L., Freeman, C. D., Schoenholz, S. S. & Kachman, T. Gradients are not all you need. Preprint at (2021).
Paszke, A. et al. PyTorch: an imperative style, high-performance deep learning library. Preprint at (2019).
Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997).
Google Scholar
O’Connell, M. et al. Neural-fly enables rapid learning for agile flight in strong winds. Sci. Robot. 7, 6597 (2022).
Google Scholar
Todorov, E., Erez, T. & Tassa, Y. Mujoco: a physics engine for model-based control. In Proc. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (eds Guglielmelli, G. et al.) 5026–5033 (IEEE, 2012).
Faessler, M., Franchi, A. & Scaramuzza, D. Differential flatness of quadrotor dynamics subject to rotor drag for accurate tracking of high-speed trajectories. IEEE Robot. Autom. Lett. 3, 620–626 (2018).
Google Scholar
Hu, Y. et al. Seeing through pixel motion: learning obstacle avoidance from optical flow with one camera. IEEE Robot. Autom. Lett. 10, 5871–5878 (2024).
Google Scholar
Girshick, R. Fast R-CNN. In Proc. 2015 IEEE International Conference on Computer Vision (ICCV) (eds Ikeuchi, K. et al.) 1440–1448 (IEEE, 2015).
Dugas, C., Bengio, Y., Bélisle, F., Nadeau, C. & Garcia, R. Incorporating second-order functional knowledge for better option pricing. In Proc. 13th Conference on Neural Information Processing Systems (eds Leen, T. et al.) 451–457 (MIT Press, 2000).
Bengio, Y., Simard, P. & Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5, 157–166 (1994).
Google Scholar
Shi, B., Bai, X. & Yao, C. An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39, 2298–2304 (2016).
Google Scholar
Scaramuzza, D. et al. Vision-controlled micro flying robots: from system design to autonomous navigation and mapping in GPS-denied environments. IEEE Robot. Autom. Mag. 21, 26–40 (2014).
Google Scholar
Liu, S., Mohta, K., Atanasov, N. & Kumar, V. Search-based motion planning for aggressive flight in SE(3). IEEE Robot. Autom. Lett. 3, 2439–2446 (2018).
Google Scholar
Neunert, M. et al. Fast nonlinear model predictive control for unified trajectory optimization and tracking. In Proc. 2016 IEEE International Conference on Robotics and Automation (ICRA) (eds Bicchi, A. & De Luca, A.) 1398–1404 (IEEE, 2016).
Falanga, D., Foehn, P., Lu, P. & Scaramuzza, D. Pampc: perception-aware model predictive control for quadrotors. In Proc. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (ed. Maciejewski, A. A.) 1–8 (IEEE, 2018).
Ji, J., Wang, Z., Wang, Y., Xu, C. & Gao, F. Mapless-planner: a robust and fast planning framework for aggressive autonomous flight without map fusion. In Proc. 2021 IEEE International Conference on Robotics and Automation (ICRA) 6315–6321 (IEEE, 2021).
Gao, F., Wu, W., Gao, W. & Shen, S. Flying on point clouds: online trajectory generation and autonomous navigation for quadrotors in cluttered environments. J. Field Robot. 36, 710–733 (2018).
Tordesillas, J. & How, J. P. Mader: trajectory planner in multiagent and dynamic environments. IEEE Trans. Robot. 38, 463–476 (2021).
Google Scholar
Wang, W. et al. Tartanair: a dataset to push the limits of visual SLAM. In Proc. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 4909–4916 (IEEE, 2020).
Teed, Z. & Deng, J. DROID-SLAM: deep visual SLAM for monocular, stereo, and RGB-D cameras. In Proc. 34th Conference on Advances in Neural Information Processing Systems (eds Ranzato, M. et al.) 16558–16569 (Curran Associates, 2021).
Vorbach, C., Hasani, R., Amini, A., Lechner, M. & Rus, D. Causal navigation by continuous-time neural networks. In Proc. 34th Conference on Advances in Neural Information Processing Systems (eds Ranzato, M. et al.) 12425–12440 (Curran Associates, 2021).
Li, G. et al. Oil: observational imitation learning. Preprint at (2019).
Kaufmann, E. et al. Deep drone racing: learning agile flight in dynamic environments. In Proc. Conference on Robot Learning (eds Billard, A. et al.) 133–145 (PMLR, 2018).
Loquercio, A. et al. Deep drone racing: from simulation to reality with domain randomization. IEEE Trans. Robot. 36, 1–14 (2019).
Google Scholar
Wang, T. & Chang, D. E. Robust navigation for racing drones based on imitation learning and modularization. In Proc. 2021 IEEE International Conference on Robotics and Automation (ICRA) 13724–13730 (IEEE, 2021).
Fu, J., Song, Y., Wu, Y., Yu, F. & Scaramuzza, D. Learning deep sensorimotor policies for vision-based autonomous drone racing. In Proc. 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 5243–5250 (IEEE, 2023).
Xing, J., Romero, A., Bauersfeld, L. & Scaramuzza, D. Bootstrapping reinforcement learning with imitation for vision-based agile flight. In Proc. 8th Annual Conference on Robot Learning (2024).
Bhattacharya, A. et al. Vision transformers for end-to-end vision-based quadrotor obstacle avoidance. In Proc. 2025 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2025).
Liang, J. & Lin, M. C. Differentiable physics simulation. In Proc. ICLR 2020 Workshop on Integration of Deep Neural Models and Differential Equations (eds Mohamed, S. et al.) (2020).
Hu, Y. et al. Difftaichi: differentiable programming for physical simulation. In Proc. International Conference on Learning Representations (2020).
Hu, Y. et al. Chainqueen: a real-time differentiable physical simulator for soft robotics. In Proc. 2019 International Conference on Robotics and Automation (ICRA) 6265–6271 (IEEE, 2019).
Bern, J. M., Schnider, Y., Banzet, P., Kumar, N. & Coros, S. Soft robot control with a learned differentiable model. In Proc. 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft) (ed. Tolley, M.) 417–423 (IEEE, 2020).
Ren, J. et al. Diffmimic: efficient motion mimicking with differentiable physics. In Proc. 11th International Conference on Learning Representations (2023).
Jatavallabhula, K. M. et al. gradsim: differentiable simulation for system identification and visuomotor control. In Proc. International Conference on Learning Representations (ICLR) (eds Oh, A. et al.) (2021).
Song, Y., Kim, S. & Scaramuzza, D. Learning quadruped locomotion using differentiable simulation. In Proc. 8th Annual Conference on Robot Learning (2024).
Schwarke, C., Klemm, V., Tordesillas, J., Sleiman, J.-P. & Hutter, M. Learning quadrupedal locomotion via differentiable simulation. Preprint at (2024)
Zhang, Y. & Hu, Y. Data for learning vision-based agile flight via differentiable physics. figshare (2025).
Zhang, Y. & Hu, Y. Code for learning vision-based agile flight via differentiable physics. Zenodo (2025).
link