Application of machine learning in breast cancer survival prediction using a multimethod approach

0
Application of machine learning in breast cancer survival prediction using a multimethod approach
  • Fitzmaurice, C. et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: A systematic analysis for the global burden of disease study. JAMA Oncol. 3(4), 524–548 (2017).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar 

  • Łukasiewicz, S. et al. Breast cancer—Epidemiology, risk factors, classification, prognostic markers, and current treatment strategies—An updated review. Cancers 13(17), 4287 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lei, S. et al. Global patterns of breast cancer incidence and mortality: A population-based cancer registry data analysis from 2000 to 2020. Cancer Commun. 41(11), 1183–1194 (2021).

    Article 

    Google Scholar 

  • Gorgzadeh, A. et al. Investigating the properties and cytotoxicity of cisplatin-loaded nano-polybutylcyanoacrylate on breast cancer cells. Asian Pac. J. Cancer Biol. 8(4), 345–350 (2023).

    Article 
    CAS 

    Google Scholar 

  • WHO. Breast cancer description available from: (2020).

  • Ahmad, A., Breast cancer statistics: recent trends. Breast cancer metastasis and drug resistance: challenges and progress, pp. 1–7 (2019).

  • CDC. Breast Cancer Statistics avaavailable from: (2023).

  • Taylor, C. et al. Breast cancer mortality in 500 000 women with early invasive breast cancer in England, 1993–2015: Population based observational cohort study. Bmj (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aryannejad, A. et al. National and subnational burden of female and male breast cancer and risk factors in Iran from 1990 to 2019: Results from the global burden of disease study 2019. Breast Cancer Res. 25(1), 47 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rahimzadeh, S. et al. Geographical and socioeconomic inequalities in female breast cancer incidence and mortality in Iran: A Bayesian spatial analysis of registry data. PLoS ONE 16(3), e0248723 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alizadeh, M. et al. Age at diagnosis of breast cancer in Iran: A systematic review and meta-analysis. Iran. J. Public Health 50(8), 1564 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Akbari, M. E. et al. Ten-year survival of breast cancer in Iran: A national study (retrospective cohort study). Breast Care (Basel) 18(1), 12–21 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Ginsburg, O. et al. Breast cancer early detection: A phased approach to implementation. Cancer 126(S10), 2379–2393 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Maajani, K. et al. The global and regional survival rate of women with breast cancer: A systematic review and meta-analysis. Clin. Breast Cancer 19(3), 165–177 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Denfeld, Q. E., Burger, D. & Lee, C. S. Survival analysis 101: An easy start guide to analysing time-to-event data. Eur. J. Cardiovasc. Nurs. 22(3), 332–337 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ghaderzadeh, M. & Aria, M. Management of Covid-19 detection using artificial intelligence in 2020 pandemic. In Proceedings of the 5th International Conference on Medical and Health Informatics. Association for Computing Machinery: Kyoto, Japan, pp. 32–38 (2021).

  • Aria, M., Ghaderzadeh, M. & Asadi, F. X-ray equipped with artificial intelligence: Changing the COVID-19 diagnostic paradigm during the pandemic. BioMed. Res. Int. 2021, 9942873 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rai, S., Mishra, P. & Ghoshal, U. C. Survival analysis: A primer for the clinician scientists. Indian J. Gastroenterol. 40(5), 541–549 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Indrayan, A. & Tripathi, C. B. Survival analysis: Where, why, what and how?. Indian Pediatr. 59(1), 74–79 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Wongvibulsin, S., Wu, K. C. & Zeger, S. L. Clinical risk prediction with random forests for survival, longitudinal, and multivariate (RF-SLAM) data analysis. BMC Med. Res. Methodol. 20(1), 1 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fraisse, J. et al. Optimal biological dose: A systematic review in cancer phase I clinical trials. BMC Cancer 21, 1–10 (2021).

    Article 

    Google Scholar 

  • Lotfnezhad Afshar, H. et al. Prediction of breast cancer survival through knowledge discovery in databases. Glob. J Health Sci. 7(4), 392–398 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Akgün, C. et al. Prognostic factors affecting survival in breast cancer patients age 40 or younger. J. Exp. Clin. Med. 39(4), 928–933 (2022).

    Article 

    Google Scholar 

  • Escala-Garcia, M. et al. Breast cancer risk factors and their effects on survival: A Mendelian randomisation study. BMC Med. 18(1), 327 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arefinia, F. et al. Non-invasive fractional flow reserve estimation using deep learning on intermediate left anterior descending coronary artery lesion angiography images. Sci. Rep. 14(1), 1818 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pacal, İ. Deep learning approaches for classification of breast cancer in ultrasound (US) images. J. Inst. Sci. Technol. 12(4), 1917–1927 (2022).

    Google Scholar 

  • Işık, G. & Paçal, İ. Few-shot classification of ultrasound breast cancer images using meta-learning algorithms. Neural Comput. Appl. 36(20), 12047–12059 (2024).

    Article 

    Google Scholar 

  • Coşkun, D. et al. A comparative study of YOLO models and a transformer-based YOLOv5 model for mass detection in mammograms. Turk. J. Electr. Eng. Comput. Sci. 31(7), 1294–1313 (2023).

    Article 

    Google Scholar 

  • Shimizu, H. & Nakayama, K. I. Artificial intelligence in oncology. Cancer Sci. 111(5), 1452–1460 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zarean Shahraki, S. et al. Time-related survival prediction in molecular subtypes of breast cancer using time-to-event deep-learning-based models. Front. Oncol. 13, 1147604 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tomatis, S. et al. Late rectal bleeding after 3D-CRT for prostate cancer: Development of a neural-network-based predictive model. Phys. Med. Biol. 57(5), 1399 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tran, K. A. et al. Deep learning in cancer diagnosis, prognosis and treatment selection. Genome Med. 13(1), 152 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ghaderzadeh, M. et al. A fast and efficient CNN model for B-ALL diagnosis and its subtypes classification using peripheral blood smear images. Int. J. Intell. Syst. 37(8), 5113–5133 (2022).

    Article 

    Google Scholar 

  • Bayani, A. et al. Identifying predictors of varices grading in patients with cirrhosis using ensemble learning. Clin. Chem. Lab. Med. (CCLM) 60(12), 1938–1945 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bayani, A. et al. Performance of machine learning techniques on prediction of esophageal varices grades among patients with cirrhosis. Clin. Chem. Lab. Med. (CCLM) 60(12), 1955–1962 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ghaderzadeh, M. et al. Deep convolutional neural network-based computer-aided detection system for COVID-19 using multiple lung scans: design and implementation study. J. Med. Internet Res. 23(4), e27468 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boldrini, L. et al. Deep learning: a review for the radiation oncologist. Front. Oncol. 9, 977 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mihaylov, I., Nisheva, M. & Vassilev, D. Application of machine learning models for survival prognosis in breast cancer studies. Information 10(3), 93 (2019).

    Article 

    Google Scholar 

  • Arya, N. & Saha, S. Multi-modal advanced deep learning architectures for breast cancer survival prediction. Knowl. -Based Syst. 221, 106965 (2021).

    Article 

    Google Scholar 

  • Montazeri, M. et al. Machine learning models in breast cancer survival prediction. Technol. Health Care 24, 31–42 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Yang, P.-T. et al. Breast cancer recurrence prediction with ensemble methods and cost-sensitive learning. Open Med. 16(1), 754–768 (2021).

    Article 
    CAS 

    Google Scholar 

  • Nguyen, Q. T. N. et al. Machine learning approaches for predicting 5 year breast cancer survival: A multicenter study. Cancer Sci. 114(10), 4063–4072 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Othman, N. A., Abdel-Fattah, M. A. & Ali, A. T. A hybrid deep learning framework with decision-level fusion for breast cancer survival prediction. Big Data Cognit. Comput. 7(1), 50 (2023).

    Article 

    Google Scholar 

  • Lotfnezhad Afshar, H. et al. Prediction of breast cancer survival by machine learning methods: An application of multiple imputation. Iran J. Public Health 50(3), 598–605 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lou, S. J. et al. Breast cancer surgery 10 year survival prediction by machine learning: A large prospective cohort study. Biology (Basel) 11(1), 47 (2021).

    MathSciNet 
    PubMed 

    Google Scholar 

  • Ganggayah, M. D. et al. Predicting factors for survival of breast cancer patients using machine learning techniques. BMC Med. Inform. Decis. Mak. 19(1), 48 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kalafi, E. et al. Machine learning and deep learning approaches in breast cancer survival prediction using clinical data. Folia Boil. 65(5/6), 212–220 (2019).

    Article 
    CAS 

    Google Scholar 

  • Tapak, L. et al. Prediction of survival and metastasis in breast cancer patients using machine learning classifiers. Clin. Epidemiol. Glob. Health 7(3), 293–299 (2019).

    Article 

    Google Scholar 

  • Zhao, M. et al. Machine learning with k-means dimensional reduction for predicting survival outcomes in patients with breast cancer. Cancer Inform. 17, 1176935118810215 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shrestha, A. & Mahmood, A. Review of deep learning algorithms and architectures. IEEE Access 7, 53040–53065 (2019).

    Article 

    Google Scholar 

  • Domínguez-Rodríguez, S. et al. Machine learning outperformed logistic regression classification even with limit sample size: A model to predict pediatric HIV mortality and clinical progression to AIDS. PLOS ONE 17(10), e0276116 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, H. et al. Improved naive Bayes classification algorithm for traffic risk management. EURASIP J. Adv. Signal Process. 2021(1), 30 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Saadatfar, H. et al. A new k-nearest neighbors classifier for big data based on efficient data pruning. Mathematics 8, 286. (2020).

    Article 

    Google Scholar 

  • Blockeel, H. et al. Decision trees: from efficient prediction to responsible AI. Front. Artif. Intell. 6, 1124553 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, L. & Li, L. Using tree-based machine learning for health studies: Literature review and case series. Int. J. Environ. Res. Public Health 19(23), 16080. (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Akinola, S., Leelakrishna, R. & Varadarajan, V. Enhancing cardiovascular disease prediction: A hybrid machine learning approach integrating oversampling and adaptive boosting techniques. AIMS Med. Sci. 11(2), 58–71 (2024).

    Article 

    Google Scholar 

  • Guido, R. et al. An overview on the advancements of support vector machine models in healthcare applications: A review. Information 15(4), 235. (2024).

    Article 

    Google Scholar 

  • El Hamdaoui, H. et al. Improving heart disease prediction using random forest and adaboost algorithms. iJOE 17(11), 61 (2021).

    Google Scholar 

  • Wassan, S. et al. Gradient boosting for health IoT federated learning. Sustainability 14, 16842. (2022).

    Article 

    Google Scholar 

  • Li, W., Peng, Y. & Peng, K. Diabetes prediction model based on GA-XGBoost and stacking ensemble algorithm. PLOS ONE 19(9), e0311222 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Prasetyo, S. Y. & Izdihar, Z. N. Multi-layer perceptron approach for diabetes risk prediction using BRFSS data. In 2024 IEEE 10th International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA). (2024).

  • Aria, M., et al., Acute lymphoblastic leukemia (ALL) image dataset. Kaggle, (2021).

  • Aria, M., et al., COVID-19 Lung CT scans: A large dataset of lung CT scans for COVID-19 (SARS-CoV-2) detection. Kaggle. accessed 20 April 2021, (2021).

  • Aria, M., Hashemzadeh, M. & Farajzadeh, N. QDL-CMFD: A quality-independent and deep learning-based copy-move image forgery detection method. Neurocomputing 511, 213–236 (2022).

    Article 

    Google Scholar 

  • Farhad, A. et al. Artificial intelligence in estimating fractional flow reserve: A systematic literature review of techniques. BMC Cardiovas. Disord. 23(1), 407 (2023).

    Article 

    Google Scholar 

  • Aria, M., Nourani, E. & Golzari Oskouei, A. ADA-COVID: Adversarial deep domain adaptation-based diagnosis of COVID-19 from lung CT scans using triplet embeddings. Comput. Intell. Neurosci. 2022(1), 2564022 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *